Basics of the Rust language

For FOSS developers

Lars Wirzenius Consulting Ltd

Boot

[l while you're waiting for the class to start

Relax. In memory of a programmer. v0.3.
Breathe. In a corner of the cemetery,
on grass, beneath an old tree,
Don't worry. lies a tombstone, fallen,
covered by moss and leaf,
It will be OK. a name, two dates, five words,

a summary of a life of grief:
"how hard can it be?"

2/ 78

Boot

B Goals of this training

e You can make sense of Rust code you read.
* You can learn more Rust on your own.

Il Vethod

We will be using mix of teaching / learning methods.
Lecture.

Group discussion.

Hands-on practice.
Active participation expected.

[l Discussion

Why are you interested in learning Rust?

3/ 78

Overview of Rust

B A Rust "hello, world" program

To verify that you have a working Rust installation:

4 /78

Overview of Rust

B A Rust "hello, world" program

This the output of CEFgoNEnEtENEUlE
Cargo. toml

57/ 78

Overview of Rust

Bl cargo

e workflow tool

o think makeé or cmakeé that is also pip or apt=get
downloads dependencies

builds code

runs the built program

runs tests

runs benchmarks

6/ 78

Overview of Rust

N\

Cargo.tomi

cargo build

7/ 78

Overview of Rust

B Rust strengths

memory safety

° no memory leaks, no use-after-free, no dangling pointers, no NULL pointers
e no data races, almost painless concurrency
strong type system with inference

Result and Option types

° no runtime exceptions

o no NULL values

performance

o zero cost abstractions, iterators

o fast execution speed

e control of how memory is used

pretty good tooling

o friendly compiler

o strong support for IDEs, programmer's editors
o fearless refactoring

evolves carefully, rarely breaks working code

8/ 78

Overview of

Rust weaknesses

e builds can be slow
* statically linked by default
°c binaries are large
e not very good for rapid prototyping: requires careful thought
¢ doesn't support as many target architectures as C does
* still young, keeps changing

Rust

9/ 78

Overview of Rust

B Rust concepts

e automatic memory management, borrow checker, lifetimes
* enumerated types where variants can contain data

e traits, generics

 match on values, structure, unpacking

* crate

* edition

Note that Rust is not an object oriented language. It does not have classes or inheritance. Traits serve similar needs.

10 / 78

B Rust

o o o o

ecosystem

Overview of

Rust Foundation
various teams: compiler, libraries, toolchain,
default central, public repository of crates: https://crates.io

= as of
s about
= about
cultural
semantic

2025-09-20...

197 thousand crates

175 billion downloads

bias against very small libraries
versioning, heavily relied-on by cargo

heavy emphasis on being careful, not breaking things
heavy emphasis on being welcoming and constructive

Rust

11 /78

Overview of

B Installing Rust

Common and preferred: rustup

o https://www.rust-lang.org/tools/install

o bad: downloads code from the Internet, runs it

o good: does its best to be safe and secure

o good: easy to get latest version of Rust toolchain and tooling
Packaged in Debian, other Linux distributions.

°c good: uses system package manager

o bad: tends to lag behind Rust development

o perfectly fine for learning

Other implementations are starting to appear but are not ready for production use yet.

Rust

12 /78

Overview of Rust

B Important sites

13 /78

B rlan

We will
steps:

l. =
2. 0

o

o

3. 0

o

Enterprise hello

develop an enterprise grade version of the "hello, world" program that cargo init produces. We will do this in several

the first, simplistic, version from cargo init
allow the user to specify who gets greeted on the command line
add command line parsing using the clap library

with default value

read who is greeted from a file

reading a file while handling errors

14 7/ 78

Enterprise hello

[l Whom should we greet? The CElfgoMtomy file

To add a dependency using a tool:

15/ 78

Enterprise hello

[l Whom should we greet? The SEC/mManMES file

16 / 78

Enterprise hello

[l Whom should we greet? The demo

17 / 78

Enterprise hello

B Read name from file: the (CEFGOMEOmMY file

18 / 78

Enterprise hello

B Read name from file: command line arguments

19 / 78

Enterprise hello

B Read name from file: error codes

20 / 78

Enterprise hello

B Read name from file: read name from file

21 / 78

B Aside: self in Rust
Method arguments:

 Reference to the value that owns the method

o

e Mutable reference

o

e Transfer ownership of value to the method

o

Alias for the type being implemented:

Enterprise

hello

22 /78

Enterprise hello

B Read name from file: main program

23 / 78

Enterprise hello

B Read name from file: the demo

24 /78

Enterprise

[l Hands-on

Install a Rust program from crates.io and try it.
$ cargo install ripgrep

Common command line tools you may enjoy:
e [ripgrep---a fast, versatile "grep"
e bat---a "less" with colors
e starship---a fancy shell prompt

Or you can find something else.

hello

25 / 78

Strings

. There can't be only one string type

e arbitrary binary data:
o sub-vector or slice:
o binary string literal

e human-oriented text as UTF8:

o

o string literal: "hello, world", type
o slice: or

e file names:

o

o

slice:

* native text for operatini system: SEGEEFFIEE0SSErRING

o slice:
o command line arguments, environment variables,

26 / 78

Strings

B Vectors, slices

27 / 78

Strings

e A vector Vec allocates memory for the values.
e A slices references values stored elsewhere.

I

| |

D poner T length3

| |

| | |

28 / 78

Strings

W strings, filenames

29 / 78

Il Native strings for the operating system

As

e command line arguments

e environment variable names and values
e raw filenames

.

Rust types:

Strings

30 / 78

Strings

[l Hands-on: byte counting

Using the enterprise version of "hello, world" as an example, write this program:

user gives filenames on the command line

iterate over all the filenames

read each file

count number of bytes in each file

for each file, output the filename and number of bytes

at the end, output the total number of bytes in all files

For extra credit, if you spare time, count number of lines instead of bytes.

https://codeberg.org/liw-rust-training/enterprise-hello.git

31/ 78

Generics

B Generic types

This is advanced, but it's used very commonly in Rust, so you need to understand it.
Types that contain values of some type, or functions that act on values of a type, but don't mind what the actual type is.
o The contained type is expressed using a type variable.
e There can be some constraints on the contained type.
e it might need to have a size known at the compile time
e A vector is a container of values of some type T: Vec<T>
o Mec needs to know how large values of type T are
o Mec doesn't do anything with the values, just stores them
o Mec is generic for type T

32 /78

Generics

Il The DFEEGH type

An Option either contains a value of a specific type, or doesn't
o implemented using an gnum
Always use Option if a value might be there or not be there. There is no "NULL pointer" or "nil reference" or "zero value".

the compiler understands the Option type and can help you get your code correct; it doesn't understand that, say, an empty
string is special

you can't get the contained type without checking that the value exists

o

pub enum Option<T> {
None,
Some(T),

33/ 78

Generics

B Unpacking an @FEEBA value: pattern matching

34 /78

Generics

Il The RESHEE type

A fallible operation returns a result—the operation either succeeded or failed

If successful, return a useful value of some type T, otherwise return an error value of some type E

Not a special magic value of the return type to indicate an error—is -1 a valid integer or does it indicate an error?
The compiler warns if results are not used

o

o

this is not an error by default, but you can make it be one—the compiler is relentless and forces you to use a result
you can ignore the result if you can't be bothered to do something about errors, but you have to be explicit about it

pub enum Result<T, E> {
0k(T),
Err(E),

35 /78

Generics

B Container: for any type T (using [i€8)

36 / 78

Generics

B Container: constrained by a trait

37 /78

Generics

[l Hands-on: generic stack

Implement a simple stack of value of any type. The following code must work with your stack.

let mut stack = Stack::new();
stack.push(3);
stack.push(2);
stack.push(1);
while !stack.is empty() {

println! ("{}", stack.pop().unwrap());
}

Hint: Look up the Mec type methods push and pop methods in the standard library documentation: https://doc.rust-lang.org/std

38 /78

Generics

[l Homework (for later)
Skim the documentation and code for the Option type and the Iterator trait in the standard library.

What's the most interesting method for you?

39 /78

Iterators

B You can implement your own iterator

e [for loops and similar constructs want iterators
o anything that implements the Iterator trait — OR the Intolterator trait
e You can implement those traits for your own types.

trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

40 / 78

Iterators

B Items returned by iterators

Some iterators return a reference to a value

o type Item = &Bar;

Others return the actual items

o type Item = Bar;

o this moves ownership if an implicit copy can't be made

for bar in foo

o f00 must be implement Iterator or Intolterator

o sometimes this ends up being an iterator that returns items
o this can lead to problems of ownership

it can be clearer to always create an iterator explicitly: there is often a method ifer for collection types, such as vectors

o for i in vec.iter()

41 / 78

Iterators

B sequence of integers: mission statement

Produce a sequence of increasing integers from a starting value until a goal. Don't include the goal.

42 / 78

Iterators

B Sequence of integers: using sequence

43 / 78

Iterators

Bl Sequence of integers: constructors

44 / 78

Iterators

88 Sequence of integers: iterator

45 / 78

Modules

B Any Rust source file may contain a module

+ [Ub is necessary for any symbol exported from a module even for "local" modules
* Often used for unit tests.
* Also useful for name space control.

46 / 78

Modules

M A Rust source file is a module

File SIFC/TOONES

File SFC/MEINNES

47 / 78

Modules

Il The [EBMES module is special
File SFC/UEENS

File SFC/MEINNES

48 / 78

Modules

B Dark mysterious secrets of the ancient world

There's more to modules in Rust, but this will get you started

49 / 78

Memory

B why?

Computer | year | RAM (KiB)
| |

PDP-7 | 1965 | 9.2 KiB

Commodore 64 1982 64 KiB

Cray X-MP 1982 128 MiB

Linus' first PC 1991 4 MiB

Nokia X10 2021 | 6 GiB

Static allocation: at compile time; wasteful.
Dynamic memory allocation.

o fit more into less

o get more bang for your buck

o waste not, want not

o simple idea, but hard to get right

50 / 78

Memory

I Manual memory management

Example: C
Promise:
Motto:

51/ 78

Memory

[l Garbage collection

Examples: LISP, Python, Ruby, Go, Java,

Promise:

| I'11 free memory you're not using anymore. You don't need to do
?Eztgi;g.special, but your programs will sometimes stall briefly at

Motto:

| "Things will usually... wait for it... work."

52 / 78

Memory

[l Automatic based on ownership

Example: Rust

Promise:

| T will give you simple rules to follow that I can check at compile
time. I will know at compile time when memory needs to be allocated
and when it can be freed. I will tell you if you make a mistake,

| and I will try to suggest how to fix it.

Motto:

| "Prove to me you manage memory correctly."

53 /78

Memory

Il Allocating memory

54 / 78

Memory

[l Ownership, freeing memory

e Every value is stored in memory

o Tlocal variables on the stack, dynamic memory on the heap
¢ Each value has exactly one owner

o There can only be one owner at a time

When the owner goes out of scope, the value will be freed
o "dropped"

let x = String::from("hello"); // allocate on heap
// value on heap exists

}

// value on heap no longer exists

55 /78

Memory

String value

containing

"hello"

56 / 78

Memory

B Keeping track of ownership

Easy: value is allocated on stack.

o compiler knows what it removes things from the stack
Hard: value is allocated on heap.

o owner may be on stack, owns value on heap

o owner may be another value on the heap

o compiler does this for you

Ownership can be moved - same value, new owner.

o compiler keeps track, no code is generated

e e.g. value is returned from function

Values can be copied or cloned - new value, new owner.

o executed at run time

o Copy trait - copy the bits of the value, e.g., integers
o Clone trait - construct new value that is semantically equal

57 / 78

Memory

Il Borrowing
Borrow = get a reference to a value.

1. At any given time, you can have either one mutable reference or any number of immutable references.
2. References must always be valid.

This prevents:
* Race conditions when data is changed.
e Using memory before it's been allocated or after it's been freed.
* NULL pointers.
Doesn't prevent:
e Other race conditions.

¢ Deadlocks.
e Live locks.

58 / 78

Memory

[Mutability and borrowing

59 / 78

Memory

. Mutability and borrowing, output

60 / 78

Memory

B Lifetime example

61 / 78

Memory

M Borrow checker error message

62 / 78

Memory

B Hands-on: generic key/value container

Create a generic key/value container type.
o any key and value type, as long as keys can be compared
Method to insert a key and value.

o 1if key already in container, replace previous value with new
Method to retrieve value.

63 / 78

Memory

[l Hands-on: key/value container interface

64 / 78

Memory

B Homework (for later)

Read the documentation for the container types provided by the standard library:

e Can you find use for them in your own programs?
+ What else would you like to have? Can you find that on EFates ia?

65 / 78

Concurrency

B why?
Computer | year | price | cores
I 1 |
Cray X-MP | 1982 | $15 million | 4
Rasp Pi 3B | 2016 | $50 4
Nokia 6.1 2018 | $200 8
e CPU cores aren't getting significantly faster anymore
e Even cheap CPUs now have more than one core or hyperthread
e To get results faster, compute more things at the same time

Traditionally really hard to get right

66 / 78

Concurrency

Il overview

* Fearless concurrency.

o safety rules apply: no data races - you must use locking if anything mutates
e Threads.

° pre-emptive

o map well into operating system threads

o mature, well supported, part of std

o good choice for CPU intensive applications
* async / await

o collaborative

o fairly new, maturing fast

o needs additional crates, e.g., tokio

o good choice for I/0 intensive applications

67 / 78

Concurrency

main thread worker thread

do other things

do some things

68 / 78

Concurrency

Il Threads, as code

69 / 78

Concurrency

Il Hands on: Concurrent file checksums

Open that page, clone the repository, read the README.
You may ask questions.

This slide will not self-destruct in five seconds.
Complete your mission.

70 / 78

Concurrency

B Async: conceptually

e Operating system threads tend to be "heavy"
o RAM, context switches
o thread runs until it blocks, or its time slot ends
o careful management of inter-thread communication
e Co-operative multi-tasking can be light-weight
o task runs alone in its thread until it blocks
o almost like writing sequential code
o Tlittle RAM, no extra task switches
o enormous numbers of tasks is feasible
e @sync is provided by many languages: JS, Python, Rust,
e @async fn - return promise of a value existing in the future
° @awalf on a promise returns when value is computed
°o a runtime executes futures to compute actual values

71 / 78

Concurrency

B Async: the Rust story

e rustc implements the async and await syntax and related semantics.
e td implements futures, and other necessary types for using async.
e Crates provide run-times (executors):

o

o o o o o

tokio
async-std
smol

vary by maturity, functionality, size, intended use, etc
you can write your own

72 / 78

Concurrency

Il Async: example (1/2)

73 / 78

Concurrency

Bl Async: example (2/2)

74 / 78

Concurrency

B Hands-on: Concurrent HTTP requests

* https://codeberg.org/liw-rust-training/get.git
e Make sure you can get that code to work.
o be kind: don't hit on a public site hard, at most 100 repetitions

Then change the code so it's given only URLs on the command line, and fetches each concurrently, and prints the status code
for each URL at the end.

75 / 78

End

B Advice for writing Rust, at first

Use clone liberally, if the borrow checker gets in the way.
o 1it's wasteful, but OK when learning

Use cargo fmt and cargo clippy frequently.

anyhow is easy, but use thiserror for better error messages.
Learn to use and implement traits.

Take small steps. No, much smaller than that.

76 / 78

B Advice for writing Rust, at first

#8¥ Now what?

Write code.

Read std docs.

Read docs for crates.
Read code.

Join community fora.

Start or join an internal group.

End

77 / 78

End

FIN
No, really.
It's over.

I hope you enjoyed it.

If you want to, I would appreciate a
public review of this training, on your
blog or social media.

78 / 78

