
Basics of the Rust language

For FOSS developers

Lars Wirzenius Consulting Ltd

Boot

██ While you're waiting for the class to start

Relax. In memory of a programmer. v0.3.

Breathe. In a corner of the cemetery,
on grass, beneath an old tree,

Don't worry. lies a tombstone, fallen,
covered by moss and leaf,

It will be OK. a name, two dates, five words,
a summary of a life of grief:
"how hard can it be?"

2 / 78

Boot

██ Goals of this training

 • You can make sense of Rust code you read.
 • You can learn more Rust on your own.

██ Method

We will be using mix of teaching / learning methods.

 • Lecture.
 • Group discussion.
 • Hands-on practice.
 • Active participation expected.

██ Discussion

Why are you interested in learning Rust?

3 / 78

Overview of Rust

██ A Rust "hello, world" program

To verify that you have a working Rust installation:

$ cargo init hello
$ cd hello
$ cargo check
$ cargo build
$ cargo run
$ cargo clippy
$ cargo doc --open

4 / 78

Overview of Rust

██ A Rust "hello, world" program

This the output of cargo init hello

▒▒▒▒ Cargo.toml ▒▒▒▒ src/main.rs

[package] fn main() {
name = "hello" println!("Hello, world!");
version = "0.1.0" }
edition = "2021"

[dependencies]

5 / 78

Overview of Rust

██ Cargo

 • workflow tool
 ◦ think make or cmake that is also pip or apt-get
 • downloads dependencies
 • builds code
 • runs the built program
 • runs tests
 • runs benchmarks

6 / 78

Overview of Rust

██ Cargo build process

7 / 78

Overview of Rust

██ Rust strengths

 • memory safety
 ◦ no memory leaks, no use-after-free, no dangling pointers, no NULL pointers
 ◦ no data races, almost painless concurrency
 • strong type system with inference
 • Result and Option types
 ◦ no runtime exceptions
 ◦ no NULL values
 • performance
 ◦ zero cost abstractions, iterators
 ◦ fast execution speed
 ◦ control of how memory is used
 • pretty good tooling
 ◦ friendly compiler
 ◦ strong support for IDEs, programmer's editors
 ◦ fearless refactoring
 • evolves carefully, rarely breaks working code

8 / 78

Overview of Rust

██ Rust weaknesses

 • builds can be slow
 • statically linked by default
 ◦ binaries are large
 • not very good for rapid prototyping: requires careful thought
 • doesn't support as many target architectures as C does
 • still young, keeps changing

9 / 78

Overview of Rust

██ Rust concepts

 • automatic memory management, borrow checker, lifetimes
 • enumerated types where variants can contain data
 • traits, generics
 • match on values, structure, unpacking
 • crate
 • edition

Note that Rust is not an object oriented language. It does not have classes or inheritance. Traits serve similar needs.

10 / 78

Overview of Rust

██ Rust ecosystem

 ◦ Rust Foundation
 ◦ various teams: compiler, libraries, toolchain, ...
 ◦ default central, public repository of crates: https://crates.io
 ▪ as of 2025-09-20...
 ▪ about 197 thousand crates
 ▪ about 175 billion downloads
 ◦ cultural bias against very small libraries
 ◦ semantic versioning, heavily relied-on by cargo
 ◦ heavy emphasis on being careful, not breaking things
 ◦ heavy emphasis on being welcoming and constructive

11 / 78

Overview of Rust

██ Installing Rust

 • Common and preferred: rustup
 ◦ https://www.rust-lang.org/tools/install
 ◦ bad: downloads code from the Internet, runs it
 ◦ good: does its best to be safe and secure
 ◦ good: easy to get latest version of Rust toolchain and tooling
 • Packaged in Debian, other Linux distributions.
 ◦ good: uses system package manager
 ◦ bad: tends to lag behind Rust development
 ◦ perfectly fine for learning
 • Other implementations are starting to appear but are not ready for production use yet.

12 / 78

Overview of Rust

██ Important sites

https://www.rust-lang.org/
https://crates.io/
https://docs.rs/
https://doc.rust-lang.org/std/

https://doc.rust-lang.org/book/
https://stevedonovan.github.io/rust-gentle-intro/
https://www.chiark.greenend.org.uk/~ianmdlvl/rust-polyglot/

https://blessed.rs/
https://serde.rs/

13 / 78

Enterprise hello

██ Plan

We will develop an enterprise grade version of the "hello, world" program that cargo init produces. We will do this in several
steps:

 1. ☑ the first, simplistic, version from cargo init
 2. ☐ allow the user to specify who gets greeted on the command line
 ◦ add command line parsing using the clap library
 ◦ with default value
 3. ☐ read who is greeted from a file
 ◦ reading a file while handling errors

14 / 78

Enterprise hello

██ Whom should we greet? The Cargo.toml file

[package]
name = "enterprise-hello"
version = "0.1.0"
edition = "2021"

[dependencies]
clap = { version = "4.0.2", features = ["derive"] }

To add a dependency using a tool:

$ cargo add clap --features derive

15 / 78

Enterprise hello

██ Whom should we greet? The src/main.rs file

use clap::Parser;

#[derive(Parser)]
struct Args {
 #[clap(default_value = "world")]

whom: String,
}

fn main() {
let args = Args::parse();

 println!("hello, {}", args.whom);
}

16 / 78

Enterprise hello

██ Whom should we greet? The demo

$ cargo run -q
Hello, world!
$ cargo run -q -- there
Hello, there!
$

17 / 78

Enterprise hello

██ Read name from file: the Cargo.toml file

[package]
name = "enterprise-hello"
version = "0.1.0"
edition = "2021"

[dependencies]
clap = { version = "4.0.2", features = ["derive"] }
thiserror = "1.0.37"

18 / 78

Enterprise hello

██ Read name from file: command line arguments

use clap::Parser;
use std::fs::read;
use std::path::{Path, PathBuf};

#[derive(Parser)]
struct Args {
 #[clap(default_value = "world")]

whom: String,

 #[clap(short, long)]
filename: Option<PathBuf>,

}

19 / 78

Enterprise hello

██ Read name from file: error codes

#[derive(Debug, thiserror::Error)]
enum HelloError {
 #[error("failed to read file {0}")]
 Read(PathBuf, #[source] std::io::Error),

 #[error("failed to parse file {0} as UTF-8")]
 Utf8(PathBuf, #[source] std::string::FromUtf8Error),
}

20 / 78

Enterprise hello

██ Read name from file: read name from file

impl Args {
fn whom(&self) -> Result<String, HelloError> {

if let Some(filename) = &self.filename {
let whom = Self::read(filename)?;

 Ok(whom)
 } else {
 Ok(self.whom.clone())
 }
 }

fn read(filename: &Path) -> Result<String, HelloError> {
let data = read(filename)

 .map_err(|e| HelloError::Read(filename.into(), e))?;
let whom = String::from_utf8(data)

 .map_err(|e| HelloError::Utf8(filename.into(), e))?;
 Ok(whom.trim().to_string())
 }
}

21 / 78

Enterprise hello

██ Aside: self in Rust

Method arguments:

 • Reference to the value that owns the method
 ◦ fn foo(&self) { ... }
 • Mutable reference
 ◦ fn foo(&mut self) { ... }
 • Transfer ownership of value to the method
 ◦ fn foo(self) { ... }

Alias for the type being implemented:

impl Foo {
fn new() -> Self {

Self { ... }
 }
}

22 / 78

Enterprise hello

██ Read name from file: main program

use std::error::Error;

fn main() {
if let Err(e) = fallible_main() {

 eprintln!("ERROR: {}", e);
let mut err = e.source();
while let Some(underlying) = err {

 eprintln!("caused by: {}", underlying);
 err = underlying.source();
 }
 }
}

fn fallible_main() -> Result<(), HelloError> {
let args = Args::parse();

 println!("hello, {}", args.whom()?);
 Ok(())
}

23 / 78

Enterprise hello

██ Read name from file: the demo

$ cargo run -q
Hello, world!
$ cargo run -q -- there
Hello, there!
$ echo Earth > name.txt
$ cargo run -q -- -f name.txt
Hello, Earth!
$ cargo run -q -- -f who-me.txt
ERROR: failed to read file who-me.txt
caused by: No such file or directory (os error 2)
$

24 / 78

Enterprise hello

██ Hands-on

Install a Rust program from crates.io and try it.

$ cargo install ripgrep

Common command line tools you may enjoy:

 • ripgrep---a fast, versatile "grep"
 • bat---a "less" with colors
 • starship---a fancy shell prompt

Or you can find something else.

25 / 78

Strings

██ There can't be only one string type

 • arbitrary binary data: Vec<u8>
 ◦ sub-vector or slice: &[u8]
 ◦ binary string literal b"hello"
 • human-oriented text as UTF8: String
 ◦ String::from("hello, world")
 ◦ string literal: "hello, world", type &str
 ◦ slice: &str, &s, &s[10..20] or s.as_str()
 • file names: std::path::PathBuf
 ◦ PathBuf::from("file.txt")
 ◦ slice: std::path::Path
 • native text for operating system: std::ffi::OsString
 ◦ slice: std::ffi::OsStr
 ◦ command line arguments, environment variables, ...

26 / 78

Strings

██ Vectors, slices

let mut v = vec![]; // v is Vec<i32>
v.push(97);
v.push(98);
v.push(99);
println!("v1: {:?}", v);

 // v1: [97, 98, 99]

let v2 = vec![97, 98, 99]; // v2 is Vec<i32>
println!("v2: {:?}", v2);

 // v2: [97, 98, 99]

let v3 = &v2[1..]; // v3 is &[i32]
println!("v3: {:?}", v3);

 // v3: [98, 99]

27 / 78

Strings

██ Vectors, slices (2)

 • A vector Vec allocates memory for the values.
 • A slices references values stored elsewhere.

28 / 78

Strings

██ Strings, filenames

let s = String::from("hello, world");
println!("s: {:?}", s);
println!("s: {}", s);

 // s: "hello, world"
 // s: hello, world

let bytes: Vec<u8> = vec![97, 98, 99];
let s2 = String::from_utf8_lossy(&bytes);
println!("s2: {:?}", s2);

 // s2: "abc"

let filename = PathBuf::from("README.md");
println!("filename: {:?}", filename);
println!("filename: {}", filename.display());

 // filename: "README.md"
 // filename: README.md

29 / 78

Strings

██ Native strings for the operating system

 • command line arguments
 • environment variable names and values
 • raw filenames
 • ...

As Rust types:

 • std::ffi::OsString
 • std::ffi::OsStr

30 / 78

Strings

██ Hands-on: byte counting

Using the enterprise version of "hello, world" as an example, write this program:

 • user gives filenames on the command line
 • iterate over all the filenames
 • read each file
 • count number of bytes in each file
 • for each file, output the filename and number of bytes
 • at the end, output the total number of bytes in all files

For extra credit, if you spare time, count number of lines instead of bytes.

https://codeberg.org/liw-rust-training/enterprise-hello.git

31 / 78

Generics

██ Generic types

 • This is advanced, but it's used very commonly in Rust, so you need to understand it.
 • Types that contain values of some type, or functions that act on values of a type, but don't mind what the actual type is.
 ◦ The contained type is expressed using a type variable.
 • There can be some constraints on the contained type.
 ◦ it might need to have a size known at the compile time
 • A vector is a container of values of some type T: Vec<T>
 ◦ Vec needs to know how large values of type T are
 ◦ Vec doesn't do anything with the values, just stores them
 ◦ Vec is generic for type T

32 / 78

Generics

██ The Option type

 • An Option either contains a value of a specific type, or doesn't
 ◦ implemented using an enum
 • Always use Option if a value might be there or not be there. There is no "NULL pointer" or "nil reference" or "zero value".
 ◦ the compiler understands the Option type and can help you get your code correct; it doesn't understand that, say, an empty
 string is special
 ◦ you can't get the contained type without checking that the value exists

pub enum Option<T> {
 None,
 Some(T),
}

33 / 78

Generics

██ Unpacking an Option value: pattern matching

fn flaunt(it: Option<i32>) {
if let Some(value) = it {

 println!("{}", value);
 }
}

fn flaunt2(it: Option<i32>) {
match it {

 Some(value) => println!("{}", value);
 _ => (),
 }
}

34 / 78

Generics

██ The Result type

 • A fallible operation returns a result—the operation either succeeded or failed
 • If successful, return a useful value of some type T, otherwise return an error value of some type E
 • Not a special magic value of the return type to indicate an error—is -1 a valid integer or does it indicate an error?
 • The compiler warns if results are not used
 ◦ this is not an error by default, but you can make it be one—the compiler is relentless and forces you to use a result
 ◦ you can ignore the result if you can't be bothered to do something about errors, but you have to be explicit about it

pub enum Result<T, E> {
 Ok(T),
 Err(E),
}

35 / 78

Generics

██ Container: for any type T (using Vec)

#[derive(Debug, Default)]
struct Container<T> {

values: Vec<T>,
}

impl<T> Container<T> {
fn len(&self) -> usize {

self.values.len()
 }

fn is_empty(&self) -> bool {
self.values.is_empty()

 }
}

36 / 78

Generics

██ Container: constrained by a trait

impl<T: Eq> Container<T> {
fn find(&self, v: &T) -> Option<usize> {

for (i, x) in self.values.iter().enumerate() {
if x == v {

return Some(i);
 }
 }
 None
 }
}

37 / 78

Generics

██ Hands-on: generic stack

Implement a simple stack of value of any type. The following code must work with your stack.

let mut stack = Stack::new();
stack.push(3);
stack.push(2);
stack.push(1);
while !stack.is_empty() {
 println!("{}", stack.pop().unwrap());
}

Hint: Look up the Vec type methods push and pop methods in the standard library documentation: https://doc.rust-lang.org/std

38 / 78

Generics

██ Homework (for later)

Skim the documentation and code for the Option type and the Iterator trait in the standard library.

What's the most interesting method for you?

39 / 78

Iterators

██ You can implement your own iterator

 • for loops and similar constructs want iterators
 ◦ anything that implements the Iterator trait — OR the IntoIterator trait
 • You can implement those traits for your own types.

trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

}

40 / 78

Iterators

██ Items returned by iterators

 • Some iterators return a reference to a value
 ◦ type Item = &Bar;
 • Others return the actual items
 ◦ type Item = Bar;
 ◦ this moves ownership if an implicit copy can't be made
 • for bar in foo
 ◦ foo must be implement Iterator or IntoIterator
 ◦ sometimes this ends up being an iterator that returns items
 ◦ this can lead to problems of ownership
 • it can be clearer to always create an iterator explicitly: there is often a method iter for collection types, such as vectors
 ◦ for i in vec.iter()

41 / 78

Iterators

██ Sequence of integers: mission statement

Produce a sequence of increasing integers from a starting value until a goal. Don't include the goal.

struct Seq {
goal: i32,
next: i32,

}

42 / 78

Iterators

██ Sequence of integers: using sequence

fn main() {
// 0, 1, 2, etc, through to 9, but not including 10
for i in Seq::new(10) {

 print!("{} ", i);
 }
 println!();

// -10, -9, etc, through to 9, but not including 10
for i in Seq::range(-10, 10) {

 print!("{} ", i);
 }
 println!();
}

43 / 78

Iterators

██ Sequence of integers: constructors

impl Seq {
fn new(goal: i32) -> Self {

Self {
 goal,
 next: 0,
 }
 }

fn range(start: i32, goal: i32) -> Self {
Self {

 goal,
 next: start,
 }
 }
}

44 / 78

Iterators

▓▓▓ Sequence of integers: iterator

impl Iterator for Seq {
type Item = i32;
fn next(&mut self) -> Option<Self::Item> {

if self.next < self.goal {
let item = Some(self.next);
self.next += 1;

 item
 } else {
 None
 }
 }
}

45 / 78

Modules

██ Any Rust source file may contain a module

fn main() {
 println!("random number is {}", foo::random());
}

mod foo {
pub fn random() -> usize {

42
 }
}

 • pub is necessary for any symbol exported from a module even for "local" modules
 • Often used for unit tests.
 • Also useful for name space control.

46 / 78

Modules

██ A Rust source file is a module

File src/foo.rs

pub fn random() -> usize {
42

}

File src/main.rs

mod foo;

fn main() {
 println!("random number is {}", foo::random());
}

47 / 78

Modules

██ The lib.rs module is special

File src/lib.rs

pub fn random() -> usize {
42

}

File src/main.rs

use foocrate::random;

fn main() {
 println!("random number is {}", random());
}

48 / 78

Modules

██ Dark mysterious secrets of the ancient world

There's more to modules in Rust, but this will get you started

49 / 78

Memory

██ Why?

Computer │ year │ RAM (KiB)
────────────────┼──────┼──────────
PDP-7 │ 1965 │ 9.2 KiB
Commodore 64 │ 1982 │ 64 KiB
Cray X-MP │ 1982 │ 128 MiB
Linus' first PC │ 1991 │ 4 MiB
Nokia X10 │ 2021 │ 6 GiB

 • Static allocation: at compile time; wasteful.
 • Dynamic memory allocation.
 ◦ fit more into less
 ◦ get more bang for your buck
 ◦ waste not, want not
 ◦ simple idea, but hard to get right

50 / 78

Memory

██ Manual memory management

Example: C

Promise:

▍ I'll give you the simplest possible tools to manage memory
▍ dynamically. You will make mistakes and they'll be hard to debug.
▍ They'll also be security problems.

Motto:

▍ "Suffering builds character"

51 / 78

Memory

██ Garbage collection

Examples: LISP, Python, Ruby, Go, Java, ...

Promise:

▍ I'll free memory you're not using anymore. You don't need to do
▍ anything special, but your programs will sometimes stall briefly at
▍ run time.

Motto:

▍ "Things will usually... wait for it... work."

52 / 78

Memory

██ Automatic based on ownership

Example: Rust

Promise:

▍ I will give you simple rules to follow that I can check at compile
▍ time. I will know at compile time when memory needs to be allocated
▍ and when it can be freed. I will tell you if you make a mistake,
▍ and I will try to suggest how to fix it.

Motto:

▍ "Prove to me you manage memory correctly."

53 / 78

Memory

██ Allocating memory

struct Point {
x: i32,
y: i32,

}

let origin = Point { x: 0, y: 0 };
let farfaraway = Point { x: 32000, y: -32000 };

54 / 78

Memory

██ Ownership, freeing memory

 • Every value is stored in memory
 ◦ local variables on the stack, dynamic memory on the heap
 • Each value has exactly one owner
 ◦ There can only be one owner at a time
 • When the owner goes out of scope, the value will be freed
 ◦ "dropped"

{
let x = String::from("hello"); // allocate on heap
// value on heap exists

}
 // value on heap no longer exists

55 / 78

Memory

██ Values on stack may own values on the heap

56 / 78

Memory

██ Keeping track of ownership

 • Easy: value is allocated on stack.
 ◦ compiler knows what it removes things from the stack
 • Hard: value is allocated on heap.
 ◦ owner may be on stack, owns value on heap
 ◦ owner may be another value on the heap
 ◦ compiler does this for you
 • Ownership can be moved → same value, new owner.
 ◦ compiler keeps track, no code is generated
 ◦ e.g. value is returned from function
 • Values can be copied or cloned → new value, new owner.
 ◦ executed at run time
 ◦ Copy trait → copy the bits of the value, e.g., integers
 ◦ Clone trait → construct new value that is semantically equal

57 / 78

Memory

██ Borrowing

Borrow = get a reference to a value.

 1. At any given time, you can have either one mutable reference or any number of immutable references.
 2. References must always be valid.

This prevents:

 • Race conditions when data is changed.
 • Using memory before it's been allocated or after it's been freed.
 • NULL pointers.

Doesn't prevent:

 • Other race conditions.
 • Deadlocks.
 • Live locks.

58 / 78

Memory

██ Mutability and borrowing

let a = String::new(); // immutable a and b
let b = &a;

let mut x = String::new(); // mutable x
x.push_str("hello");
let y = &mut x;
y.push_str(", world"); // modify contents of x
println!("y={y:?}"); // OK: we don't use y after this!

let mut z = &x; // immutable reference to x
println!("first z={z:?}");
z = &a; // change what z refers to

println!("a={a:?} b={b:?} z={z:?}");

59 / 78

Memory

██ Mutability and borrowing, output

$ cargo run -q
y="hello, world"
first z="hello, world"
a="" b="" z=""

60 / 78

Memory

██ Lifetime example

fn main() {
let mut refs: Vec<&String> = vec![];

 {
let x = String::from("hello");

 refs.push(&x);
 }

for s in refs {
 println!("{}", s);
 }
}

61 / 78

Memory

██ Borrow checker error message

error[E0597]: `x` does not live long enough
 --> src/main.rs:5:19
 |
5 | refs.push(&x);
 | ^^ borrowed value does not live long enough
6 | }
 | - `x` dropped here while still borrowed
7 | for s in refs {
 | ---- borrow later used here

For more information about this error, try
`rustc --explain E0597`.

62 / 78

Memory

██ Hands-on: generic key/value container

 • Create a generic key/value container type.
 ◦ any key and value type, as long as keys can be compared
 • Method to insert a key and value.
 ◦ if key already in container, replace previous value with new
 • Method to retrieve value.

63 / 78

Memory

██ Hands-on: key/value container interface

struct Container<K: Eq, V> { values: Vec<(K, V)> }
impl<K: Eq, V> Container<K, V> {

fn new() -> Self { /* FIXME */ }
fn insert(&mut self, k: K, v: V) { /* FIXME */ }
fn get(&self, k: &K) -> Option<&V> { /* FIXME */ }

}
fn main() {

let alice = "alice".to_string();
let bob = "bob".to_string();
let robert = "Robert".to_string();
let mut cont = Container::new();

 cont.insert(bob.clone(), bob.clone());
 cont.insert(bob.clone(), robert);
 println!("{} -> {:?}", &alice, cont.get(&alice));
 println!("{} -> {:?}", &bob, cont.get(&bob));

// Output should be Robert
}

64 / 78

Memory

██ Homework (for later)

Read the documentation for the container types provided by the standard library:

https://doc.rust-lang.org/std/collections/index.html

 • Can you find use for them in your own programs?
 • What else would you like to have? Can you find that on crates.io?

65 / 78

Concurrency

██ Why?

Computer │ year │ price │ cores
───────────┼──────┼─────────────┼──────
Cray X-MP │ 1982 │ $15 million │ 4
Rasp Pi 3B │ 2016 │ $50 │ 4
Nokia 6.1 │ 2018 │ $200 │ 8

 • CPU cores aren't getting significantly faster anymore
 • Even cheap CPUs now have more than one core or hyperthread
 • To get results faster, compute more things at the same time
 • Traditionally really hard to get right

66 / 78

Concurrency

██ Overview

 • Fearless concurrency.
 ◦ safety rules apply: no data races → you must use locking if anything mutates
 • Threads.
 ◦ pre-emptive
 ◦ map well into operating system threads
 ◦ mature, well supported, part of std
 ◦ good choice for CPU intensive applications
 • async / await
 ◦ collaborative
 ◦ fairly new, maturing fast
 ◦ needs additional crates, e.g., tokio
 ◦ good choice for I/O intensive applications

67 / 78

Concurrency

██ Threads, conceptually

68 / 78

Concurrency

██ Threads, as code

use std::thread::spawn;

let mut handles = vec![];
for filename in args.filenames {

let handle = spawn(move || checksum(&filename));
 handles.push(handle);
}

for handle in handles {
let sumresult = handle.join().expect("thread join");
let sum = sumresult?;

 sum.print();
}

69 / 78

Concurrency

██ Hands on: Concurrent file checksums

 • https://codeberg.org/liw-rust-training
 ◦ repository /checksums-hands-on.git
 • Open that page, clone the repository, read the README.
 • You may ask questions.
 • This slide will not self-destruct in five seconds.
 • Complete your mission.

70 / 78

Concurrency

██ Async: conceptually

 • Operating system threads tend to be "heavy"
 ◦ RAM, context switches
 ◦ thread runs until it blocks, or its time slot ends
 ◦ careful management of inter-thread communication
 • Co-operative multi-tasking can be light-weight
 ◦ task runs alone in its thread until it blocks
 ◦ almost like writing sequential code
 ◦ little RAM, no extra task switches
 ◦ enormous numbers of tasks is feasible
 • async is provided by many languages: JS, Python, Rust, ...
 ◦ async fn → return promise of a value existing in the future
 ◦ await on a promise returns when value is computed
 ◦ a runtime executes futures to compute actual values

71 / 78

Concurrency

██ Async: the Rust story

 • rustc implements the async and await syntax and related semantics.
 • std implements futures, and other necessary types for using async.
 • Crates provide run-times (executors):
 ◦ tokio
 ◦ async-std
 ◦ smol
 ◦ ...
 ◦ vary by maturity, functionality, size, intended use, etc
 ◦ you can write your own

72 / 78

Concurrency

██ Async: example (1/2)

#[tokio::main]
async fn main() -> anyhow::Result<()> {

let args = Args::parse();
let mut tasks = vec![];
let client = reqwest::Client::builder()

 .danger_accept_invalid_certs(true)
 .build()?;

for _ in 0..args.n {
let url = args.url.clone();
let client = client.clone();
let x = tokio::spawn(

 async move { client.get(&url).send().await });
 tasks.push(x);
 }
 println!("Created {} tasks", args.n);

73 / 78

Concurrency

██ Async: example (2/2)

for task in tasks {
let result = task.await?;
let response = result?;
if !response.status().is_success() {

 println!("{:?} {}", args.url,
 response.status());
 }
 }
 println!("All went OK");
 Ok(())
}

74 / 78

Concurrency

██ Hands-on: Concurrent HTTP requests

 • https://codeberg.org/liw-rust-training/get.git
 • Make sure you can get that code to work.
 ◦ be kind: don't hit on a public site hard, at most 100 repetitions
 • Then change the code so it's given only URLs on the command line, and fetches each concurrently, and prints the status code
 for each URL at the end.

75 / 78

End

██ Advice for writing Rust, at first

 • Use clone liberally, if the borrow checker gets in the way.
 ◦ it's wasteful, but OK when learning
 • Use cargo fmt and cargo clippy frequently.
 • anyhow is easy, but use thiserror for better error messages.
 • Learn to use and implement traits.
 • Take small steps. No, much smaller than that.

76 / 78

End

██ Advice for writing Rust, at first

▓▓▓ Now what?

 • Write code.
 • Read std docs.
 • Read docs for crates.
 • Read code.
 • Join community fora.
 • Start or join an internal group.

77 / 78

End

FIN

No, really.

It's over.

I hope you enjoyed it.

If you want to, I would appreciate a
public review of this training, on your
blog or social media.

78 / 78

